Ejercicios y problemas de calculo - descargar libro gratuito

Ejercicios y problemas de calculo


Ruben Flores Espinoza
Marco Antonio Valencia Arvizu
Martín Gildardo García Alvarado
Rodrigo González González

Conocimientos previos

Para comprender y aplicar el Cálculo Diferencial e Integral son necesarios algunos conocimientos previos.

Entre ellos se requiere conocer el concepto, la notación y las operaciones con conjuntos; dominar las operaciones algebraicas, resolver ecuaciones de primero y segundo grado, resolver sistemas de ecuaciones, conocer las progresiones aritméticas y geométricas y resolver desigualdades.
Por lo que se refiere a la geometría, conocer las propiedades de los triángulos, los cuadriláteros, los polígonos regulares y los círculos; calcular áreas y volúmenes de las figuras y cuerpos más conocidos. En cuanto a la trigonométrica, conocer las relaciones trigonométricas, el círculo trigonométrico y las principales identidades trigonométricas con senos y cosenos.

En lo que corresponde a la geometría analítica, es importante conocer la manera de trazar la gráfica de ecuaciones algebraicas asociadas con rectas y secciones cónicas, es decir, saber interpretar geográficamente, en el plano cartesiano, las ecuaciones de primero y segundo grado.

Y recíprocamente, dadas algunas propiedades geométricas, construir las ecuaciones que representa rectas y secciones cónicas, o sea, círculos, elipses, parábolas e hipérbolas. Los ejercicios y problemas planteados a continuación buscan ayudar a recordar algunos de estos temas, sin pretender ser exhaustivos.

1.1 Conjuntos Ejercicios 1. Sean los conjuntos A = {a, b, c, d, e, 1, 2, 3, 4, 5, 6} , B = {a, b, c, 1, 2, 5, 6, α, β, π} , C = {a, b, e, 1, 2, 3, 5, 6, α, β, δ, ρ} .

Exhiba los elementos de los conjuntos siguientes:

(a) A ∩ B (b) (A ∪ B) ∩ C (c) (A ∩ C) ∪ (A ∩ B) (d) (A ∩ Bc ) ∪ C.

2. Demuestre las siguientes relaciones entre conjuntos:

(a) (A ∪ B) ∩ (B c ∩ A) ⊂ A (b) (Ac ∩ Bc ) ∩ (A ∩ C) = ∅ (c) (A ∩ Bc ) ∪ (Ac ∩ B) ⊂ (Ac ∩ Bc )c

Problema

3. Considere lo siguiente:

U = conjunto de todas las personas,

A = conjunto de personas nacidas en México,

B = conjunto de las personas menores de 30 a˜nos,

C = conjunto de hijos de padres mexicanos.

(a) Si para ser candidato a la presidencia de México se requiere tener más de 30 a˜nos y haber nacido en México de padres mexicanos, exprese el conjunto de los candidatos posibles en términos de los conjuntos U, A, B, C y las operaciones conjuntivas.

(b) Escriba en términos de los conjuntos U, A, B, C y de las operaciones conjuntivas el conjunto X de las personas que no pueden ser presidente de México.

1.2 Álgebra ´ Ejercicios

4. Si las soluciones de la ecuación x 2 + bx + c = 0 son ln 2 y π, encuentre el valor de b.

5. Encuentre la suma de todas las soluciones de la ecuación | 2x + 4√ 2 | + | x − √ 2 |= 9√ 2.

6. Encuentre los valores de x para los cuales la expresión x 2 − 9 x − 4 es positiva.

7. Resuelva la desigualdad x 2 − x x 2 + 13x 6 0.


Comentarios

Entradas populares de este blog

La vía rápida del millonario [PDF] ▷ Descargar Gratis

[PDF] ANÁLISIS NUMÉRICO - Hernán Benalcázar Gómez descargar

American English File 4 pdf + audios ▷ aprender inglés rapido